Launch History and Forecasts Total U.S. Space Launches -- Quantity of Launches

Bow wave continues to shift to the right Forecast indicates government will remain a prominent player

Sources: National Launch Forecast, Space Launch Manifest, NASA Forecast, SV and LV Contractor Manifests, Space Launch Information Center

Fly-out Context

- Atlas, Delta and Titan launched 777 space missions since 1958
- Established national security satellite constellations for:
 - Communications
 - Missile early warning
 - Weather
 - Navigation
 - Reconnaissance and surveillance
 - Experimentation
- Provided the foundation for the U.S. commercial launch industry
- Contributed to NASA's space science and planetary missions and early manned space flight

Failures & Serious Anomalies

- Atlas/Delta/Titan launch vehicles
 - One failure per year (average) during past 12 years (200 launches)
 - Five failures (Delta III, Titan IV) in 10 months (25 launches)
 - Upper stages -- 3 failures (5 launches)
- Serious Atlas/Delta/Titan anomalies e.g., major leak, bad separation, nozzle loss
 - 18 in past 12 years (200 launches)
 - 9 in 24 months (51 launches)

Recent Failures

Government Missions

- Titan IV A-20/Centaur/NRO
 - Titan wiring harness caused short -- damaged pre-launch
- Titan IV B-27/Inertial Upper Stage-21/DSP-19
 - IUS thermal tape misapplication restricted separation connector operation -- indications present in previous flights
- Titan IV B-32/Centaur TC-14/Milstar-3
 - Centaur manual data entry error in flight software -- resulting anomaly detected pre-launch but not corrected

Commercial Missions

- Delta III 259/Galaxy-X
 - Inadequate modeling of flight control dynamics
- Delta III 269/Orion-3
 - Inadequate brazing specification potentially coupled with vehicle induced loading caused combustion chamber breach

Factory-introduced engineering and workmanship errors predominate

Failure and Major Anomaly Causes

Failures -- 76% Engineering

Major Anomalies -- 69% Identifiable as Engineering

- Engineering deficiencies prominent in majority of mishaps
- Space launch remains an intensely engineering activity
- Inadequate post flight analysis of anomalies

Some Current Launch System Facts of Life

Titan IV system launches

- Remaining 11 launches involve high value national security spacecraft (~\$9 Billion)
- Are demanding -- will never be routine
- Each configuration is unique
- Almost no margin for error
- Infrequent events -- e.g. Titan/IUS had 1 launch in 4 years (1994-1998)
- Launch schedules inevitably move to the right -- often significantly

• Even Atlas and Delta, with a string of launch successes, generate continuing unique challenges

- Atlas and Delta experienced 8 major anomalies in last 2.5 years
- Atlas 141 has been on Pad 3E at Vandenberg for more than two years due to spacecraft and upper stage issues

Titan Development

- 1960s -- Air Force started heavy lift space booster program using Titan II upgraded to Titan III
- 1978 -- decision to fly all DoD, civil and commercial spacecraft on the Space Shuttle ended the Atlas, Delta and Titan 34D programs -based on economics
- 1983 -- Air Force initiated the CELV program to back up the space shuttle -- continue a Titan/Centaur line for 10 additional launches
- 28 January 1986 -- Challenger accident
 - Unmanned missions to be on ELVs
 - The U.S. expendable fleet was reborn
 - Titan program redefined with multiple configurations & launch sites
- June 1989 -- first launch of the 41-buy Titan IV

Titan IV acquisition reflects emergency response to accommodate spacecraft from Shuttle

Manufacturing Discipline Launch Base Unplanned Work

Ninety percent of unplanned Titan work to correct factory errors

Titan Success Rate History

Mission success planning needs to reflect launch reliability reality